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Abstract

The use of a buckled or pre-bent column with fixed ends as a vibration isolator is analyzed. The column is
designed to have a high axial stiffness under the weight that it supports, so that the static displacement of
the weight is not excessive, and then to have a low stiffness during excitation. The base of the column is
assumed to have an axial motion which is simple harmonic or a linear combination of two simple harmonic
functions. The column is modeled as an elastica. First the equilibrium shape under the supported weight is
determined. Then small steady-state vibrations about the equilibrium configuration are obtained
numerically using a shooting method. The inertia of the supported weight and the transverse and axial
inertias of the column are included. The axial displacement transmissibility is computed, and the effects of
external and internal damping, column stiffness, supported weight, and initial curvature are investigated.
For the two-frequency excitation, the effects of the relative amplitudes and frequencies of the excitation
components are considered.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Isolators are placed between a ‘‘base’’ and a ‘‘system’’, either to reduce the transmission of
motions from the system to the base, or to reduce the effect of base motions on the system [1].
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Effective filtering often requires that the dominant excitation frequency be higher than the
fundamental frequency of the system. Therefore, it is desirable that this latter frequency be low.
Sometimes it is also required that the static deflection of the weight supported by the isolator be
small (e.g., if there is a displacement constraint). Slightly buckled or pre-bent columns may be
useful in satisfying these two characteristics.
Winterflood et al. [2–4] discussed such a potential application of buckled columns with fixed

ends. They performed a static analysis, conducted static and vibration tests, and obtained
transfer functions. Virgin and Davis [5] carried out experiments involving a weight supported
by two buckled pinned–pinned columns in parallel. Vertical harmonic base excitation was
applied, and the vertical response of the weight was measured. A similar type of isolator con-
sisting of a buckled mechanism (two rigid bars with a rotational spring at the connecting
hinge) was analyzed by Plaut et al. [6]. Both parametric and external (forcing) excitations
appeared in the equation of motion, and chaotic responses were exhibited for certain large
base motions.
The related problem of free vibrations of buckled columns has been studied in a number of

papers. Virgin [7] performed a one-mode analysis for a pinned–pinned column, Nayfeh et al. [8]
treated fixed–fixed, fixed–pinned, and pinned–pinned columns (with the assumption that the
equilibrium shape along the post-buckling path is the same as at the origin of that path), and
Lestari and Hanagud [9] considered columns with rotational springs at the ends. In the field of
nanomechanics, Nicu and Bertaud [10] and Nicu et al. [11] conducted experiments on buckled
fixed–fixed ‘‘microbridges’’.
The response of buckled columns to harmonic axial loading was investigated by Abou-Rayan

et al. [12] and Ji and Hansen [13]. Since the column is not straight, parametric and external
excitations are involved in the analysis. In Ref. [12], the same approximation as in Ref. [8] was
made and large responses were computed for a pinned–pinned column. In Ref. [13], experiments
were carried out on fixed–fixed columns.
Here the dynamic response is analyzed for a buckled or pre-bent fixed–fixed column that

supports a weight and is subjected to axial motion at its base. It is assumed that horizontal
motion of the supported weight is suppressed, without affecting the vertical motion. Section 2
contains the formulation for the case of simple harmonic base motion, and results are presented in
Section 3. Excitation consisting of a linear combination of two harmonic motions is considered in
Section 4, and concluding remarks are given in Section 5.
2. Formulation for simple harmonic excitation

The column is assumed to be an elastica, which is thin, flexible, inextensible, and unshearable
[14]. It is uniform with constant bending stiffness EI, constant mass per unit length m; and length
L. The supported weight at the top of the column is P0; and the weight of the column is neglected.
From the base, the arc length is S, the axial and transverse coordinates are X ðS;TÞ and Y ðS;TÞ;
respectively, and the rotation angle in radians is yðS;TÞ; where T denotes time. The column is
unstrained when the rotation angle is y0ðSÞ; with y0ð0Þ ¼ y0ðLÞ ¼ 0: The coefficients of external
and internal (Kelvin–Voigt) damping are C and G; respectively. The bending moment MðS;TÞ is
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given by [15]

M ¼ EI
qy
qS

�
dy0
dS

� �
þ GI

q
qT

qy
qS

� �
: (1)

The axial and transverse forces in the column are denoted PðS;TÞ and QðS;TÞ; respectively,
UðTÞ is the axial displacement of the base with U0 being its amplitude, and O is an applied
frequency. The analysis is carried out in terms of the nondimensional quantities
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where r will be called the stiffness parameter.
In nondimensional terms, the column is drawn in a horizontal configuration in Fig. 1, with its

base at the left. A free body diagram of an element of the column is depicted in Fig. 2. Based on
geometry, Eq. (1), and dynamic equilibrium in Fig. 2, the governing nondimensional equations
are as follows:
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: ð3Þ
Fig. 1. Geometry of buckled or pre-bent column subjected to base motion and to static and inertia forces of supported

weight, in nondimensional terms.

Fig. 2. Free body diagram of column element, including inertia and external damping forces.
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The boundary conditions at s ¼ 0 are

xð0; tÞ ¼ uðtÞ; yð0; tÞ ¼ 0; yð0; tÞ ¼ 0: (4)

At s ¼ 1; the boundary conditions are

yð1; tÞ ¼ 0; yð1; tÞ ¼ 0; pð1; tÞ ¼ p0 þ rp0
q2xð1; tÞ

qt2
: (5)

For simple harmonic axial base excitation, it is assumed that

uðtÞ ¼ u0e
iot; (6)

where u040:
First the equilibrium configuration is analyzed. The subscript ‘‘e’’ is used for the corresponding

quantities. The internal forces are pe ¼ p0 and qe ¼ 0; and the governing equations for the
remaining quantities are

dxe

ds
¼ cos ye;

dye

ds
¼ sin ye;

dye

ds
¼ me þ

dy0
ds

;
dme

ds
¼ �p0 sin ye: (7)

The boundary conditions are xeð0Þ ¼ 0; yeð0Þ ¼ 0; yeð0Þ ¼ 0; yeð1Þ ¼ 0 and yeð1Þ ¼ 0: Eqs. (7) are
solved numerically using a shooting method with the subroutines NDSolve and FindRoot in
Mathematica [16]. For given supported weight p0 and initial displacement y0ðsÞ; the value of með0Þ
is varied until one of the boundary conditions at s ¼ 1 is satisfied with sufficient accuracy [17].
Next, small steady-state vibrations about the equilibrium configuration are considered. The

variables are written in the following complex form:

xðs; tÞ ¼ xeðsÞ þ xdðsÞe
iot; yðs; tÞ ¼ yeðsÞ þ ydðsÞe

iot;

yðs; tÞ ¼ yeðsÞ þ ydðsÞe
iot; mðs; tÞ ¼ meðsÞ þ mdðsÞe

iot;

pðs; tÞ ¼ p0 þ pdðsÞe
iot; qðs; tÞ ¼ qdðsÞe

iot; ð8Þ

where the subscript ‘‘d’’ designates ‘‘dynamic’’. The dynamic quantities are assumed to be small,
and the resulting linear equations for these quantities are as follows:

dxd

ds
¼ �yd sin ye;

dyd

ds
¼ yd cos ye;

dyd

ds
¼

md

ð1þ iogÞ
;

dmd

ds
¼ ðqd � p0yd Þ cos ye � pd sin ye;

dpd

ds
¼ ðo2 � iocÞxd ;

dqd

ds
¼ ðo2 � iocÞyd : ð9Þ

The boundary conditions are xdð0Þ ¼ u0; ydð0Þ ¼ 0; yd ð0Þ ¼ 0; ydð1Þ ¼ 0; ydð1Þ ¼ 0; and pd ð1Þ ¼
�rp0o

2xdð1Þ:
The solution procedure for Eqs. (9) is similar to that for equilibrium. The weight p0; initial

rotation angle y0ðsÞ; external damping coefficient c, internal damping coefficient g; stiffness
parameter r, excitation amplitude u0; and excitation frequency o are specified, and með0Þ is known
from the equilibrium solution. The quantities md ð0Þ; pdð0Þ; and qdð0Þ are varied until the boundary
conditions at s ¼ 1 are satisfied [17].
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The transmissibility TR is defined as the ratio of the amplitude of the axial motion of the
supported weight to the amplitude of the applied axial motion at the base of the column. Hence,

TR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fRe½xdð1Þ	g

2 þ fIm½xdð1Þ	g
2

p
u0

(10)

and TR is independent of u0 (since xd is proportional to u0). The objective is for TR to be much
less than unity for a large range of excitation frequencies, or at least for the expected range to
which the system will be subjected.
In some of the numerical examples, the column will be ‘‘perfect’’, i.e., unstrained when straight

ðy0ðsÞ ¼ 0Þ; and the supported weight will be slightly above the critical load pCR ¼ 4p2 ¼ 39:48: In
the remaining examples, the column will have an initial displacement (before supporting the
weight p0) in the shape of the first buckling mode, i.e.,

y0ðsÞ ¼ a0 sin 2ps; (11)

in which case the corresponding central displacement is y ¼ 0:32a0:
3. Results for simple harmonic excitation

First the column is assumed to be perfect, i.e., a0 ¼ 0: In most of the figures, the transmissibility
TR will be plotted as a function of the excitation frequency o: For sufficiently small damping and
sufficiently high values of the stiffness parameter r, the curves have an infinite number of peaks,
usually diminishing in magnitude as the frequency increases. Only the first peak will be included in
the frequency range used in many of the figures, and the corresponding frequency will be called
the peak frequency.
In Fig. 3, the abscissa is o

p
r rather than o to show the effect of the column bending stiffness EI

on the transmissibility. Since the definition of the nondimensional frequency o depends on EI, the
abscissa in Fig. 3 is chosen to be proportional to the dimensional applied frequency. For p0 ¼ 40;
c ¼ 1; and g ¼ 0; transmissibility curves are shown for stiffness parameter values r ¼ 0:1; 1; and
Fig. 3. Variation of transmissibility with o
p

r (proportional to dimensional frequency); p0 ¼ 40; c ¼ 1; g ¼ 0; a0 ¼ 0:
??, r ¼ 0:1; - - - -, r ¼ 1; ——, r ¼ 10:
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10. It is seen that the peak dimensional frequency increases as the column bending stiffness
increases. Also, the maximum value of the transmissibility increases, as shown explicitly in Fig. 4
for this weight p0 ¼ 40 and also for p0 ¼ 41 (again with c ¼ 1 and g ¼ 0).
Fig. 5 illustrates the effect of internal damping for the case p0 ¼ 40; r ¼ 0:1; and c ¼ 0: The

external damping coefficient c has a similar influence on the transmissibility curves [17]. The effect
of the supported weight is shown in Fig. 6, where r ¼ 1; c ¼ 1; and g ¼ 0: The central transverse
displacement of the column in equilibrium under the weight is y ¼ 0:10 for p0 ¼ 40 and y ¼ 0:17
for p0 ¼ 41: An increase in the weight from p0 ¼ 40 to 41 causes a significant increase in the
maximum transmissibility (also see Fig. 4) and a small increase in the peak frequency.
Next, the column is assumed to be pre-bent with its initial rotation angle given by Eq. (11).

Cases of supported weight less than the critical load are included in the numerical results. First the
equilibrium configuration is determined, and Table 1 lists the central deflection yeð0:5Þ and the end
Fig. 4. Maximum transmissibility vs. stiffness parameter; c ¼ 1; g ¼ 0; a0 ¼ 0: - - - -, p0 ¼ 40; ——, p0 ¼ 41:

Fig. 5. Transmissibility curves; p0 ¼ 40; r ¼ 0:1; c ¼ 0; a0 ¼ 0: ——, g ¼ 0; - - - -, g ¼ 0:001; ? � , g ¼ 0:01; —�—,

g ¼ 0:1:
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Table 1

Central displacement and end shortening for various supported weights, in nondimensional terms

a0 ¼ 0:05 a0 ¼ 0:05 a0 ¼ 0:10

p0 yeð0:5Þ d p0 yeð0:5Þ d p0 yeð0:5Þ d

10 0.0043 0.000045 10 0.021 0.00050 10 0.043 0.0020

20 0.0064 0.00010 20 0.032 0.0019 20 0.064 0.0076

30 0.013 0.00043 30 0.065 0.0098 30 0.12 0.036

40 0.16 0.064 40 0.23 0.15 40 0.28 0.22

Fig. 6. Transmissibility curves; r ¼ 1; c ¼ 1; g ¼ 0; a0 ¼ 0: - - - -, p0 ¼ 40; ——, p0 ¼ 41:
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shortening d for weights p0 ¼ 10; 20, 30, and 40, with a0 ¼ 0:01; 0.05, and 0.10. Transmissibility
curves are plotted in Fig. 7 for p0 ¼ 40 and in Fig. 8 for p0 ¼ 10 (with r ¼ 1; c ¼ 1; and g ¼ 0). In
Fig. 7, as a0 increases, the peak frequency and maximum transmissibility increase. For the case
p0 ¼ 10 in Fig. 8, however, the peak frequency decreases as a0 increases (see Fig. 9). No curve is
shown for the perfect column, since it does not exhibit transverse motion when p0opCR:
To be effective as an isolator, the transmissibility TR should be less than unity. In Fig. 7, the

range in which this occurs (which lies to the right of the peak and after TR decreases below unity)
becomes smaller as a0 increases. Therefore, if the supported weight will be greater than the critical
load, the unstrained column should be as straight as possible.
To illustrate the behavior when the applied frequency is higher than plotted in the previous figures,

transmissibility curves for a larger frequency range, 0ooo300; are depicted in Figs. 10 and 11. The
parameters are a0 ¼ 0:05; r ¼ 1; c ¼ 0:1; and g ¼ 0: In Fig. 10, the transmissibility is plotted up to
TR ¼ 20 and curves for p0 ¼ 10; 20, 30, and 40 are presented, whereas the range is 0oTRo2 in
Fig. 11 and only curves for p0 ¼ 20 and 40 are shown. For p0 ¼ 40; the five peaks occur at o ¼ 0:88;
45, 77, 142, and 227. The corresponding vibration modes about the equilibrium configuration have
zero, one, two, three, and four nodes, respectively, and are alternately symmetric and anti-symmetric
about the center s ¼ 0:5 [17]. If p0opCR; the local transmissibility peaks corresponding to the anti-
symmetric modes are very small, as seen at o ¼ 54 and 190 in Fig. 11.
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Fig. 7. Transmissibility curves; p0 ¼ 40; r ¼ 1; c ¼ 1; g ¼ 0: - - - -, a0 ¼ 0; ? � , a0 ¼ 0:01; ——, a0 ¼ 0:05; ——,

a0 ¼ 0:1:

Fig. 8. Transmissibility curves; p0 ¼ 10; r ¼ 1; c ¼ 1; g ¼ 0: ? � , a0 ¼ 0:01; - - - -, a0 ¼ 0:05; ——, a0 ¼ 0:1:

R.H. Plaut et al. / Journal of Sound and Vibration 283 (2005) 1216–1228 1223
With regard to the effectiveness of the column as an isolator, Fig. 11 indicates that the
transmissibility is almost zero for large ranges of applied frequency if the weight is slightly above
the critical load for this imperfect case. For weights lower than the critical load, the frequency
ranges in which the transmissibility is very low are not as large.
4. Two-frequency excitation

In this section, the axial excitation is assumed to have the form

uðtÞ ¼ u0e
iot þ rau0e

irf ot; (12)
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Fig. 9. Weight vs. peak frequency; r ¼ 1; c ¼ 1; g ¼ 0: ——, a0 ¼ 0:01; - - - -, a0 ¼ 0:05; ——, a0 ¼ 0:1:

Fig. 10. Transmissibility curves with 0ooo300; r ¼ 1; c ¼ 0:1; g ¼ 0; a0 ¼ 0:05: ——, p0 ¼ 10; - - - -, p0 ¼ 20; ——,

p0 ¼ 30; —�—, p0 ¼ 40:

R.H. Plaut et al. / Journal of Sound and Vibration 283 (2005) 1216–12281224
where u040; ra40; and rf41; with ra and rf representing the ratios of the amplitude and
frequency, respectively, of the added component to those of the original one. The analysis is
similar to that for the single-frequency excitation, but the steady-state vibrations have two
dynamic components. For example,

xðs; tÞ ¼ xeðsÞ þ x1ðsÞe
iot þ x2ðsÞe

irf ot: (13)

Eqs. (9) are replaced by two similar sets of six equations. It is assumed that there is no initial
displacement of the column ða0 ¼ 0Þ:
For a given excitation (12), the axial response xð1; tÞ of the weight is not simple harmonic

motion and is not proportional to the axial base excitation. The transmissibility is defined in a
different way than previously. The dynamic axial response, given by the real part of the last two
terms in Eq. (13) at s ¼ 1; is computed for a length of time equal to 50 periods of the second
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Fig. 11. Transmissibility curves with 0ooo300 and 0oTRo2; r ¼ 1; c ¼ 0:1; g ¼ 0; a0 ¼ 0:05: - - - -, p0 ¼ 20; ——,

p0 ¼ 40:

Fig. 12. Transmissibility curves; p0 ¼ 40; r ¼ 1; c ¼ 1; g ¼ 0; a0 ¼ 0; rf ¼ 1:5: ? � � , ra ¼ 0:5; - - - -, ra ¼ 1:0; ——,

ra ¼ 1:5:
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dynamic component. The root mean square of this response is used as the numerator of the
transmissibility ratio, and the root mean square of the real part of Eq. (12) over the same range of
time is used as the denominator.
Fig. 12 shows the effect of the amplitude ratio ra for the case p0 ¼ 40; r ¼ 1; c ¼ 1; g ¼ 0; and

frequency ratio rf ¼ 1:5; for the range 0ooo1:25: The second component of excitation causes a
second peak at a value of o approximately equal to 2

3
of the original peak frequency. The relative

heights of the peaks depend on ra; with the first peak being higher if ra is sufficiently large. For
higher modes, the second component in Eq. (12) also causes additional peaks to occur at
frequencies approximately 2

3 of those of the peaks due to the first component. These additional
peaks reduce the regions of frequencies in which the column is an effective isolator, compared to
the single-frequency case.
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The effect of the bending stiffness of the column is depicted in Fig. 13. As in Fig. 3, the abscissa
is o

p
r rather than o: In Fig. 13, p0 ¼ 40; c ¼ 1; g ¼ 0; the amplitude ratio is ra ¼ 1; and the

frequency ratio is rf ¼ 2: The transmissibility is only plotted to a value of 2. Stiffness parameter
values r ¼ 0:1; 1, and 10 are considered. For each r, the first peak is at half the frequency of the
second peak. The curve for r ¼ 0:1 dips down to a low value of transmissibility at a lower value of
the dimensional frequency than for the cases r ¼ 1 and 10.
Finally, Fig. 14 illustrates the effect of the second component of the excitation. For both curves,

p0 ¼ 40; r ¼ 0:1; c ¼ 1; and g ¼ 0: The solid curve corresponds to a single-frequency excitation.
For the dashed curve, the amplitude ratio is 1 and the frequency ratio is 2. With respect to an
Fig. 13. Variation of transmissibility with o
p

r (proportional to dimensional frequency); p0 ¼ 40; c ¼ 1;
g ¼ 0; a0 ¼ 0; ra ¼ 1; rf ¼ 2: ? � , r ¼ 0:1; - - - -, r ¼ 1; ——, r ¼ 10:

Fig. 14. Transmissibility curves; p0 ¼ 40; r ¼ 0:1; c ¼ 1; g ¼ 0; a0 ¼ 0: —— ra ¼ 0 (single-frequency excitation); - - - -

ra ¼ 1 and rf ¼ 2 (two-frequency excitation).
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application as an isolator, for 0ooo3 in Fig. 14 the transmissibility is less than unity for a larger
range of frequencies when the input includes the second component.
5. Concluding remarks

The application of a slightly-buckled or slightly-bent fixed–fixed column as an isolator was
analyzed. Small axial base excitations were considered, consisting of one or two simple harmonic
components. The transmissibility was defined as a ratio of amplitude measures of the motions of
the supported weight and the base, and the objective is for this ratio to be much less than unity. In
practice, a rigid or flexible body could be supported by a number of such columns.
The column was modeled as an inextensible elastica, which allows large displacements in

equilibrium. Also, this model makes it easy to include both transverse and axial inertia forces of
the column in the governing equations, and to include the base displacement excitation and the
axial inertia force of the supported weight as boundary conditions. Numerical solutions were
obtained with the use of a shooting method, in which the boundary value problem was treated as
an initial value problem. First the equilibrium configuration was obtained, and then small steady-
state vibrations about this configuration were analyzed.
For sufficiently low damping and sufficiently high column stiffness, the transmissibility curves

exhibit an infinite number of peaks. Considering harmonic base motion, for columns with no
initial displacement, it is advantageous for the weight to be only slightly above the critical load.
For columns with initial displacement in the shape of the first buckling mode, lower
transmissibilities are exhibited between the peaks if the supported weight is above the critical
load. If the weight is lower than the critical load, the transmissibility peaks corresponding to anti-
symmetric modes are very small.
Considering the addition of a second harmonic component of base motion which has a higher

frequency than the first, another set of transmissibility peaks occurs at correspondingly lower
frequencies. In the examples treated, the transmissibility in frequency ranges between the peaks is
almost the same as if the excitation only contained the first frequency.
Buckled or pre-bent columns have the potential to act as effective vibration isolators which can

support weights without significant vertical deflections, and possess low fundamental frequencies
which could lead to low transmissibilities for large ranges of applied frequencies.
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